##plugins.themes.bootstrap3.article.main##

Agung Triayudi

Abstract

Garbage/waste is the residue of human daily activities or comes from natural processes in solid form. Some of the causes that affect the environment are the problems of managing and disposing of waste/household waste. Company "X" is a company engaged in waste transportation services and non-hazardous waste management for business sectors such as apartments, offices, hospitals, and hotels. In this problem, there is an increase in the cubication of household waste produced by the vendor company "X" every month. Data mining is the extraction of information. Identify hidden information from large amounts of data, leverage and promote knowledge in real-time applications. Clustering is a multidimensional statistic designed to collect similar individuals into homogeneous classes based on observations in variables. The resulting classes can be set according to various structures. This study will cluster data from the volume of levies issued by the Environmental Service from 2010 to 2021 into 3 clustering categories, namely Klassam_0 for low volume of waste generated, Klassam_1 for medium volume of waste generated, and Klassam_2 for the volume of waste generated is high. From the results of this study, there were 8 on Klassam_0, 88 on Klassam_1, and 48 on Klassam_2. The volume of organic and inorganic waste is very good because of the emphasis on the waste management process that occurs in 2021, from the results of the clustering in 1 year (12 months) in 2021 8 months or clusters that are included in klassam¬_0 which can be interpreted as volume of waste "low", and 4 months or clusters included in klassam_2 which can be interpreted as "high" volume of waste.

##plugins.themes.bootstrap3.article.details##

How to Cite
Triayudi, A. (2022). Implementation of the waste volume clustering method at company "x" to reduce the amount of waste using the k-medoids algorithm. International Journal of Basic and Applied Science, 11(2), 86–94. https://doi.org/10.35335/ijobas.v11i2.73
References
[1] Riswan, H. R. Sunoko, and A. Hadiyanto, “Kesadaran Lingkungan,” J. Ilmu Lingkung., vol. 9, no. 1, pp. 31–39, 2015.
[2] J. Nair and K. Okamitsu, “Microbial inoculants for small scale composting of putrescible kitchen wastes,” Waste Manag., vol. 30, no. 6, pp. 977–982, 2010.
[3] D. Anggraini, M. B. Pertiwi, and D. Bahrin, “Biogas Dari Sampah Organik,” Pengaruh Jenis Sampah, Komposisi Masukan dan Waktu Tinggal Terhadap Komposisi Biogas dari Sampah Organik, vol. 18, no. 1, pp. 17–23, 2012.
[4] A. Maruf, “Legal Aspects of Environment in Indonesia: An Efforts to Prevent Environmental Damage and Pollution,” J. Hum. Rights, Cult. Leg. Syst., vol. 1, no. 1, 2021.
[5] R. N. Stavins, “Transaction costs and tradeable permits,” J. Environ. Econ. Manage., vol. 29, no. 2, pp. 133–148, 1995.
[6] S. E. Lestari and H. Djanggih, “Urgensi Hukum Perizinan Dan Penegakannya Sebagai Sarana Pencegahan Pencemaran Lingkungan Hidup,” Masal. Huk., vol. 48, no. 2, p. 147, 2019, doi: 10.14710/mmh.48.2.2019.147-163.
[7] B. P. Moutong, “Pemerintah kabupaten parigi moutong,” vol. 2000, pp. 1–18, 2005.
[8] F. T. Seik, “Recycling of domestic waste: early experiences in Singapore,” Habitat Int., vol. 21, no. 3, pp. 277–289, 1997.
[9] H. Morley, Cornelius Agrippa: The Life of Henry Cornelius Agrippa Von Nettesheim, Doctor and Knight, Commonly Known as a Magician, vol. 1. Chapman and Hall, 1856.
[10] R. Anjariansyah and A. Triayudi, “Clustering Kebutuhan Makanan untuk Meminimasi Standar Deviasi Angka Kebutuhan Gizi Menggunakan Algoritma K-Means dan K- Medoids,” J. Media Inform. Budidarma, vol. 6, no. 1, pp. 597–607, 2022, doi: 10.30865/mib.v6i1.3522.
[11] F. S. Genius Zendrato, A. Triayudi, and E. T. E, “Analisis Clustering Dokumen Tugas Akhir Mahasiswa Sistem Informasi Universitas Nasional menggunakan Metode K-Means Clustering,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 6, no. 1, pp. 70–76, 2022, doi: 10.35870/jtik.v6i1.389.
[12] V. Thambusamy, “IJCTAPP-Velmurugan.pdf”.
[13] D. R. Cutler et al., “Random forests for classification in ecology,” Ecology, vol. 88, no. 11, pp. 2783–2792, 2007.
[14] “Selected Contributions in Data Analysis and Classification - Google Buku.”
[15] D. A. I. C. Dewi and D. A. K. Pramita, “Analisis Perbandingan Metode Elbow dan Silhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali,” Matrix J. Manaj. Teknol. dan Inform., vol. 9, no. 3, pp. 102–109, 2019, doi: 10.31940/matrix.v9i3.1662.
[16] U. Fayyad and P. Stolorz, “Data mining and KDD: Promise and challenges,” Futur. Gener. Comput. Syst., vol. 13, no. 2–3, pp. 99–115, 1997.
[17] F. Yoseph, N. H. Ahamed Hassain Malim, M. Heikkilä, A. Brezulianu, O. Geman, and N. A. Paskhal Rostam, “The impact of big data market segmentation using data mining and clustering techniques,” J. Intell. Fuzzy Syst., vol. 38, no. 5, pp. 6159–6173, 2020.
[18] S. Defiyanti, M. Jajuli, and N. Rohmawati, “Optimalisasi K-MEDOID dalam Pengklasteran Mahasiswa Pelamar Beasiswa dengan CUBIC CLUSTERING CRITERION,” J. Nas. Teknol. dan Sist. Inf., vol. 3, no. 1, pp. 211–218, 2017, doi: 10.25077/teknosi.v3i1.2017.211-218.
[19] M. of I. A. of G. I. U. of K. Singingi, “Jurnal Mantik,” J. Mantik, vol. 3, no. January, pp. 31–38, 2019.
[20] D. R. Fajrin, A. Triayudi, and S. Ningsih, “Analisis Faktor yang mempengaruhi Pembelian Makanan secara Online pada Masa Pandemi Covid-19 menggunakan Metode K-Means Clustering (Studi Kasus: Online Shop Bellyboys.id),” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 6, no. 1, pp. 77–84, 2022, doi: 10.35870/jtik.v6i1.390.
[21] T. Firman, “Inter-local-government partnership for urban management in decentralizing Indonesia: from below or above? Kartamantul (Greater Yogyakarta) and Jabodetabek (Greater Jakarta) compared,” Sp. Polity, vol. 18, no. 3, pp. 215–232, 2014.
[22] M. Riduansyah, “Kontribusi Pajak Daerah Dan Retribusi Daerah Terhadap Pendapatan Asli Daerah (Pad) Dan Anggaran Pendapatan Dan Belanja Daerah (Apbd) Guna Mendukung Pelaksanaan Otonomi Daerah (Studi Kasus Pemerintah Daerah Kota Bogor),” Makara Hum. Behav. Stud. Asia, vol. 7, no. 2, p. 49, 2003, doi: 10.7454/mssh.v7i2.51.
[23] A. Y. Rofiqi, “Clustering Berita Olahraga Berbahasa Indonesia Menggunakan Metode K-Medoid Bersyarat,” J. Simantec, vol. 6, no. 1, pp. 25–32, 2017.
[24] M. T. Furqon, A. Ridok, and W. F. Mahmudy, “Paralelisasi Algoritma K-Medoid Pada Gpu,” pp. 408–413, 2015.
[25] Y. Reynaldo, A. Triayudi, and S. Ningsih, “Analisis Faktor yang Mempengaruhi Gamers PC dan Konsol Beralih ke Game Mobile menggunakan Metode K-Means Clustering,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 6, no. 1, pp. 42–48, 2022, doi: 10.35870/jtik.v6i1.383.
[26] D. Marlina, N. Fauzer Putri, A. Fernando, and A. Ramadhan, “Implementasi Algoritma K-Medoids dan K-Means untuk Pengelompokkan Wilayah Sebaran Cacat pada Anak,” J. CoreIT, vol. 4, no. 2, 2018.
[27] C. Astria, D. Hartama, A. P. Windarto, and I. Sudahri, “Pengembangan Metode Datamining K-Medoid Pada Kasus Distribusi Listrik di Indonesia,” Semin. Nas. Teknol. Komput. Sains, pp. 276–281, 2020.
[28] A. Supriyadi, A. Triayudi, and I. D. Sholihati, “Perbandingan Algoritma K-Means Dengan K-Medoids Pada Pengelompokan Armada Kendaraan Truk Berdasarkan Produktivitas,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 6, no. 2, pp. 229–240, 2021, doi: 10.29100/jipi.v6i2.2008.
[29] R. Handoyo, R. Rumani, and S. M. Nasution, “Perbandingan metode clustering menggunakan metode single linkage dan K-Means pada pengelompokan dokumen,” JSM STMIK Mikroskil, vol. 15, no. 2, pp. 73–82, 2014.