##plugins.themes.bootstrap3.article.main##

Hengki Tamando Sihotang
Desi Vinsensia
Fristi Riandari
Suherman Chandra

Abstract

This research aimed to develop a Dynamic Financial Growth Model (DFGM) to enhance corporate growth by promoting strategic agility through data-driven decision-making. The main objective was to optimize corporate value by integrating real-time data, dynamic decision-making, risk management, and scenario analysis. The research employed a mathematical modelling framework that combined predictive analytics, real options theory, and scenario-based optimization to represent dynamic corporate financial decisions. The numerical example demonstrated how the model adjusts strategic decisions in response to changes in market data and evaluates corporate value under optimistic, pessimistic, and baseline scenarios. The main results indicated that the DFGM is effective in optimizing corporate value by allowing for continuous adjustments and strategic flexibility, distinguishing itself from traditional static financial models that lack real-time adaptability. The findings highlighted the value of incorporating risk constraints and scenario analysis, resulting in a balanced approach that manages both growth and uncertainty. However, the study identified limitations, including the need for empirical validation, more complex predictive analytics, and accounting for behavioral factors affecting decision-making. The conclusion emphasizes that the DFGM provides an adaptable and data-driven framework that enhances corporate strategic agility, making it a valuable tool for managing growth in rapidly changing environments, while also suggesting future research to refine the model's practical application

##plugins.themes.bootstrap3.article.details##

How to Cite
Sihotang, H. T., Vinsensia, D., Riandari, F., & Chandra, S. (2024). Data-driven corporate growth: A dynamic financial modelling framework for strategic agility. International Journal of Basic and Applied Science, 13(2), 84–95. https://doi.org/10.35335/ijobas.v13i2.485
References
W. Elali, “The importance of strategic agility to business survival during corona crisis and beyond,” Int. J. Bus. Ethics Gov., vol. 4, no. 2, pp. 1–8, 2021, doi: https://doi.org/10.51325/ijbeg.v4i2.64.
J. R. L. Kaivo-oja and I. T. Lauraeus, “The VUCA approach as a solution concept to corporate foresight challenges and global technological disruption,” foresight, vol. 20, no. 1, pp. 27–49, 2018, doi: https://doi.org/10.1108/FS-06-2017-0022.
Y. Barlette and P. Baillette, “Big data analytics in turbulent contexts: towards organizational change for enhanced agility,” Prod. Plan. Control, vol. 33, no. 2–3, pp. 105–122, 2022, doi: https://doi.org/10.1080/09537287.2020.1810755.
M. Zollo, E. L. M. Bettinazzi, K. Neumann, and P. Snoeren, “Toward a comprehensive model of organizational evolution: Dynamic capabilities for innovation and adaptation of the enterprise model,” Glob. Strateg. J., vol. 6, no. 3, pp. 225–244, 2016, doi: https://doi.org/10.1002/gsj.1122.
F. Cosenz and E. Bivona, “Fostering growth patterns of SMEs through business model innovation. A tailored dynamic business modelling approach,” J. Bus. Res., vol. 130, no. 6, pp. 658–669, 2021, doi: https://doi.org/10.1016/j.jbusres.2020.03.003.
S. Kolasani, “Innovations in digital, enterprise, cloud, data transformation, and organizational change management using agile, lean, and data-driven methodologies,” Int. J. Mach. Learn. Artif. Intell., vol. 4, no. 4, pp. 1–18, 2023, [Online]. Available: https://jmlai.in/index.php/ijmlai/article/view/35
D. Kumar, “Enterprise growth strategy: vision, planning and execution,” in Enterprise Growth Strategy, Routledge, 2016, p. 418. doi: https://doi.org/10.4324/9781315579870.
H. Chen, R. H. L. Chiang, and V. C. Storey, “Business intelligence and analytics: From big data to big impact,” MIS Q., vol. 36, no. 4, pp. 1165–1188, 2012, doi: https://doi.org/10.2307/41703503.
F. Provost and T. Fawcett, “Data science and its relationship to big data and data-driven decision making,” Big data, vol. 1, no. 1, pp. 51–59, 2013, doi: https://doi.org/10.1089/big.2013.1508.
F. Provost, Data Science for Business: What you need to know about data mining and data-analytic thinking, vol. 355. O’Reilly Media, Inc, 2013.
N. Stylos, J. Zwiegelaar, and D. Buhalis, “Big data empowered agility for dynamic, volatile, and time-sensitive service industries: the case of tourism sector,” Int. J. Contemp. Hosp. Manag., vol. 33, no. 3, pp. 1015–1036, 2021, doi: https://doi.org/10.1108/IJCHM-07-2020-0644.
K. S. Al-Omoush, F. Garcia-Monleon, and J. M. M. Iglesias, “Exploring the interaction between big data analytics, frugal innovation, and competitive agility: The mediating role of organizational learning,” Technol. Forecast. Soc. Change, vol. 200, no. 3, p. 123188, 2024, doi: https://doi.org/10.1016/j.techfore.2023.123188.
T. Clauss, M. Abebe, C. Tangpong, and M. Hock, “Strategic agility, business model innovation, and firm performance: an empirical investigation,” IEEE Trans. Eng. Manag., vol. 68, no. 3, pp. 767–784, 2019, doi: https://doi.org/10.1109/TEM.2019.2910381.
Y. Doz and M. Kosonen, “The dynamics of strategic agility: Nokia’s rollercoaster experience,” Calif. Manage. Rev., vol. 50, no. 3, pp. 95–118, 2008, doi: https://doi.org/10.2307/41166447.
B. Azvine, Z. Cui, D. D. Nauck, and B. Majeed, “Real time business intelligence for the adaptive enterprise,” in The 8th IEEE International Conference on E-Commerce Technology and The 3rd IEEE International Conference on Enterprise Computing, E-Commerce, and E-Services (CEC/EEE’06), IEEE, 2006, p. 29. doi: https://doi.org/10.1109/CEC-EEE.2006.73.
G. Weichhart, A. Molina, D. Chen, L. E. Whitman, and F. Vernadat, “Challenges and current developments for sensing, smart and sustainable enterprise systems,” Comput. Ind., vol. 79, no. 6, pp. 34–46, 2016, doi: https://doi.org/10.1016/j.compind.2015.07.002.
F. D. Macías-Escrivá, R. Haber, R. Del Toro, and V. Hernandez, “Self-adaptive systems: A survey of current approaches, research challenges and applications,” Expert Syst. Appl., vol. 40, no. 18, pp. 7267–7279, 2013.
S. Ren, Y. Zhang, Y. Liu, T. Sakao, D. Huisingh, and C. M. V. B. Almeida, “A comprehensive review of big data analytics throughout product lifecycle to support sustainable smart manufacturing: A framework, challenges and future research directions,” J. Clean. Prod., vol. 210, no. 10, pp. 1343–1365, 2019, doi: https://doi.org/10.1016/j.jclepro.2018.11.025.
K. Shimizu and M. A. Hitt, “Strategic flexibility: Organizational preparedness to reverse ineffective strategic decisions,” Acad. Manag. Perspect., vol. 18, no. 4, pp. 44–59, 2004, doi: https://doi.org/10.5465/ame.2004.15268683.
B. Sen Gupta, “Supply Chain Disruption & Plausible Solution in the Scenario of COVID-19 Pandemic; Forging a Pandemic Adaptive Supply Chain,” Tampere University, 2020. doi: https://trepo.tuni.fi/handle/10024/123429.
E. Brynjolfsson, L. M. Hitt, and H. H. Kim, “Strength in numbers: How does data-driven decisionmaking affect firm performance?,” Available SSRN 1819486, vol. 1, no. 1, pp. 1–33, 2011, doi: https://dx.doi.org/10.2139/ssrn.1819486.
S. F. Wamba, A. Gunasekaran, S. Akter, S. J. Ren, R. Dubey, and S. J. Childe, “Big data analytics and firm performance: Effects of dynamic capabilities,” J. Bus. Res., vol. 70, no. 3, pp. 356–365, 2017, doi: https://doi.org/10.1016/j.jbusres.2016.08.009.
A. Gunasekaran et al., “Big data and predictive analytics for supply chain and organizational performance,” J. Bus. Res., vol. 70, no. 2, pp. 308–317, 2017, doi: https://doi.org/10.1016/j.jbusres.2016.08.004.
L. Li, J. Lin, Y. Ouyang, and X. R. Luo, “Evaluating the impact of big data analytics usage on the decision-making quality of organizations,” Technol. Forecast. Soc. Change, vol. 175, no. 2, p. 121355, 2022, doi: https://doi.org/10.1016/j.techfore.2021.121355.
Q. A. Nisar, N. Nasir, S. Jamshed, S. Naz, M. Ali, and S. Ali, “Big data management and environmental performance: role of big data decision-making capabilities and decision-making quality,” J. Enterp. Inf. Manag., vol. 34, no. 4, pp. 1061–1096, 2021, doi: https://doi.org/10.1108/JEIM-04-2020-0137.
S. Singh, S. S. Rajest, S. Hadoussa, A. J. Obaid, and R. Regin, Data-driven decision making for long-term business success. IGI Global, 2023.
A. E. Artene, A. E. Domil, and L. Ivascu, “Unlocking Business Value: Integrating AI-Driven Decision-Making in Financial Reporting Systems.,” Electron., vol. 13, no. 15, pp. 30–69, 2024, doi: 10.3390/electronics13153069.
M. Al-Okaily and A. Al-Okaily, “Financial data modeling: an analysis of factors influencing big data analytics-driven financial decision quality,” Emerald Publishing Limited, 2024. doi: https://doi.org/10.1108/JM2-08-2023-0183.
D. Bechtsis, N. Tsolakis, E. Iakovou, and D. Vlachos, “Data-driven secure, resilient and sustainable supply chains: gaps, opportunities, and a new generalised data sharing and data monetisation framework,” Int. J. Prod. Res., vol. 60, no. 14, pp. 4397–4417, 2022, doi: 10.1080/00207543.2021.1957506.
P. M. Madhani, “Resource based view (RBV) of competitive advantage: an overview,” Resour. based view concepts Pract. Pankaj Madhani, ed, vol. 3, no. 6, pp. 3–22, 2010, doi: https://ssrn.com/abstract=1578704.
R. Dahiya, S. Le, J. K. Ring, and K. Watson, “Big data analytics and competitive advantage: the strategic role of firm-specific knowledge,” J. Strateg. Manag., vol. 15, no. 2, pp. 175–193, 2022, doi: https://doi.org/10.1108/JSMA-08-2020-0203.
S. Akter, A. Gunasekaran, S. F. Wamba, M. M. Babu, and U. Hani, “Reshaping competitive advantages with analytics capabilities in service systems,” Technol. Forecast. Soc. Change, vol. 159, no. 10, p. 120180, 2020, doi: https://doi.org/10.1016/j.techfore.2020.120180.
A. Garg and D. P. Goyal, “Sustained business competitive advantage with data analytics,” Int. J. Bus. Data Anal., vol. 1, no. 1, pp. 4–15, 2019, doi: https://doi.org/10.1504/IJBDA.2019.098829.
D. J. Teece, G. Pisano, and A. Shuen, “Dynamic capabilities and strategic management,” Strateg. Manag. J., vol. 18, no. 7, pp. 509–533, 1997, doi: https://doi.org/10.1002/(SICI)1097-0266(199708)18:7%3C509::AID-SMJ882%3E3.0.CO;2-Z.
L. von Bertalanffy, “General systems theory as integrating factor in contemporary science,” Akten des XIV. Int. Kongresses für Philos., vol. 2, no. 1, pp. 335–340, 1968, doi: https://doi.org/10.5840/wcp1419682120.
M. P. Ferreira, F. R. Serra, B. K. Costa, and M. Almeida, “A bibliometric study of the resource-based view (RBV) in international business research using barney (1991) as a key marker,” Innovar, vol. 26, no. 61, pp. 131–144, 2016.
J. Barney, “Firm resources and sustained competitive advantage,” J. Manage., vol. 17, no. 1, pp. 99–120, 1991, doi: https://doi.org/10.1177/014920639101700108.
J. Barney, “Special theory forum the resource-based model of the firm: origins, implications, and prospects,” J. Manage., vol. 17, no. 1, pp. 97–98, 1991, doi: https://doi.org/10.1177/014920639101700107.
V. Grover, R. H. L. Chiang, T.-P. Liang, and D. Zhang, “Creating strategic business value from big data analytics: A research framework,” J. Manag. Inf. Syst., vol. 35, no. 2, pp. 388–423, 2018, doi: https://doi.org/10.1080/07421222.2018.1451951.
H. Makkonen, M. Pohjola, R. Olkkonen, and A. Koponen, “Dynamic capabilities and firm performance in a financial crisis,” J. Bus. Res., vol. 67, no. 1, pp. 2707–2719, 2014, doi: https://doi.org/10.1016/j.jbusres.2013.03.020.
C. Vitari and E. Raguseo, “Digital data, dynamic capability and financial performance: an empirical investigation in the era of Big Data,” Systèmes d’information Manag., vol. 21, no. 3, pp. 63–92, 2016, [Online]. Available: https://shs.cairn.info/revue-systemes-d-information-et-management-2016-3-page-63?lang=fr
M. L. Santos-Vijande, J. Á. López-Sánchez, and J. A. Trespalacios, “How organizational learning affects a firm’s flexibility, competitive strategy, and performance,” J. Bus. Res., vol. 65, no. 8, pp. 1079–1089, 2012, doi: https://doi.org/10.1016/j.jbusres.2011.09.002.
O. Troisi, G. Maione, M. Grimaldi, and F. Loia, “Growth hacking: Insights on data-driven decision-making from three firms,” Ind. Mark. Manag., vol. 90, no. 10, pp. 538–557, 2020, doi: https://doi.org/10.1016/j.indmarman.2019.08.005.
J. Brownlow, M. Zaki, A. Neely, and F. Urmetzer, “Data and analytics-data-driven business models: A Blueprint for Innovation,” Cambridge Serv. Alliance, vol. 7, no. February, pp. 1–17, 2015.
R. Kaufmann, A. Gadmer, and R. Klett, “Introduction to dynamic financial analysis,” ASTIN Bull. J. IAA, vol. 31, no. 1, pp. 213–249, 2001, doi: https://doi.org/10.2143/AST.31.1.1003.
V. Svatošová, “Proposal and simulation of dynamic financial strategy model,” Futur. Stud. Res. J. Trends Strateg., vol. 11, no. 1, pp. 84–101, 2019, doi: https://doi.org/10.24023/FutureJournal/2175-5825/2019.v11i1.346.
R. Dieci, X.-Z. He, and C. Hommes, Nonlinear economic dynamics and financial modelling. Springer, 2014. doi: https://doi.org/10.1007/978-3-319-07470-2.
M. Eling and T. Parnitzke, “Dynamic financial analysis: Classification, conception, and implementation,” Risk Manag. Insur. Rev., vol. 10, no. 1, pp. 33–50, 2007, doi: https://doi.org/10.1111/j.1540-6296.2007.00104.x.
G. Kim, B. Shin, K. K. Kim, and H. G. Lee, “IT capabilities, process-oriented dynamic capabilities, and firm financial performance,” J. Assoc. Inf. Syst., vol. 12, no. 7, p. 1, 2011, doi: 10.17705/1jais.00270.
T. Saebi, L. Lien, and N. J. Foss, “What drives business model adaptation? The impact of opportunities, threats and strategic orientation,” Long Range Plann., vol. 50, no. 5, pp. 567–581, 2017, doi: https://doi.org/10.1016/j.lrp.2016.06.006.
W. W. Eckerson, “Predictive analytics,” Extending Value Your Data Warehous. Investment. TDWI Best Pract. Rep., vol. 1, no. 4, pp. 1–36, 2007.
R. Bose, “Advanced analytics: opportunities and challenges,” Ind. Manag. Data Syst., vol. 109, no. 2, pp. 155–172, 2009, doi: https://doi.org/10.1108/02635570910930073.
L. Maisel and G. Cokins, Predictive business analytics: Forward looking capabilities to improve business performance. John Wiley & Sons, 2013.
L. Trigeorgis and J. J. Reuer, “Real options theory in strategic management,” Strateg. Manag. J., vol. 38, no. 1, pp. 42–63, 2017, doi: https://doi.org/10.1002/smj.2593.
L. Trigeorgis, “Real options and interactions with financial flexibility,” Financ. Manag., vol. 22, no. 3, pp. 202–224, 1993, doi: https://doi.org/10.2307/3665939.
R. G. Dyson and F. S. Oliveira, “Flexibility, robustness and real options.,” Wiley, 2007. [Online]. Available: https://rgu-repository.worktribe.com/output/2152543
L. T. Miller and C. S. Park, “Decision making under uncertainty—real options to the rescue?,” Eng. Econ., vol. 47, no. 2, pp. 105–150, 2002, doi: https://doi.org/10.1080/00137910208965029.

Author Biography

Hengki Tamando Sihotang, Universitas Putra Abadi Langkat, INDONESIA