##plugins.themes.bootstrap3.article.main##

Tomi Irnawandi Tafonae

Abstract

Housing is a basic human need and needs to be fostered and developed for the sake of continuity and improvement of people's lives and settlements which cannot be seen as they mean of need, but more than that it is a human settlement in creating a space of life to promote themselves in revealing their identity. During this time the decision making of home selection desired by consumers still experienced several obstacles, namely the slow process of decision making, inconvenience to the housing environment, credit installments and so on. This is because there is no objective method for deciding on a fast choice based on housing data which is right in accordance with consumer desires. By referring to the solution given by Fuzzy Tsukamoto in helping to make a decision, a decision maker can make decisions about housing according to the desired quickly by comparing all existing criteria. Decision support systems are generally defined as a system that is capable of producing solutions and handling problems. Decision support systems are not intended to replace the role of decision makers, but to help and support decision makers. This Fuzzy Tsukamoto method can determine the preference value of each alternative, and can select the best alternative from a number of alternatives.

##plugins.themes.bootstrap3.article.details##

How to Cite
Tafonae, T. I. (2019). House Selection Decision Support System with Fuzzy Tsukamoto Method. International Journal of Basic and Applied Science, 8(2), 70–76. https://doi.org/10.35335/ijobas.v8i2.40
References
S. D. Priyani, P. Firdaus, E. Permatasari, and R. Safitri, “Studi Penentuan Harga Rumah di Jakarta Menggunakan Metode Fuzzy,” J. Al-Azhar Indones. Seri Sains dan Teknol., vol. 3, no. 2, pp. 98–103, 2017.
B. Bahriansyah, “SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN RUMAH MENGGUNAKAN METODE ANALYTICAL HIERARCHY PROCESS (AHP) DI KOTA SAMARINDA.” Teknik Informatika, 2015.
M. Azhari and A. Septiarini, “Penerapan Fuzzy Tahani Pada Sistem Pendukung Keputusan Pemilihan Pembelian Rumah Di Kota Samarinda,” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 8, no. 2, pp. 56–60, 2016.
B. Fachrizal, I. F. Astuti, and D. M. Khairina, “Sistem Pendukung Keputusan untuk Kredit Pemilikan Rumah Bank UOB Menggunakan Metode Simple Additive Weighthing,” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 8, no. 3, pp. 72–79, 2016.
T. Taslim and E. Putra, “PENERAPAN METODA FUZZY ANALYTICAL HIERARCHY PROCES UNTUK PEMBERIAN BEASISWA (STUDI KASUS FAKULTAS ILMU KOMPUTER UNIVERSITAS LANCANG KUNING),” J. Ilm. Media Sisfo, vol. 10, no. 2, pp. 676–684, 2017.
N. T. Wirawan and R. Devita, “Implementasi Algoritma Fuzzy Logic Pada Robot Arm Dengan Memanfaatkan Accelerometer Smartphone Android,” J. Teknol. Inf. dan Pendidik., vol. 10, no. 2, pp. 1–12, 2017.
M. Ula, “Implementasi Logika Fuzzy Dalam Optimasi Jumlah Pengadaan Barang Menggunakan Metode Tsukamoto (Studi Kasus: Toko Kain My Text),” J. Ecotipe (Electronic, Control. Telecommun. Information, Power Eng., vol. 1, no. 2, pp. 36–46, 2014.
H. Nasution, “Implementasi Logika Fuzzy pada Sistem Kecerdasan Buatan,” J. ELKHA, vol. 4, no. 2, 2012.
S. Wibowo, “Penerapan Logika Fuzzy Dalam Penjadwalan Waktu Kuliah,” J. Inform. UPGRIS, vol. 1, no. 1 Juni, 2015.
A. Yulianti, “Klasifikasi Kompetensi Jabatan Pada Pegawai Negeri Sipil (PNS) Dalam Jabatan Fungsional Umum (JFU) Menggunakan Metode Multi Rough Set.” Institut Teknologi Sepuluh Nopember, 2016.
A. P. Widyassari and T. Yuwono, “Perbandingan Analytical Hierarchy Process dan Fuzzy Mamdani untuk sistem pendukung keputusan pemilihan rumah di daerah Cepu,” J. Comp. Inf. Syst. Technol. Manag., vol. 1, pp. 50–54, 2018.
R. Pamungkas et al., “DEWAN REDAKSI.”
D. K. Hapsari, “CITRA PARTAI POLITIK DI INDONESIA (Analisis Perbandingan Citra Partai DEMOKRAT, PDI-P dan GOLKAR berdasarkan Isi Blog selama masa kampanye PILPRES tanggal 29 Mei 2009 sampai 4 Juli 2009).” UAJY, 2009.
S. Kusumadewi, “Fuzzy quantification theory I untuk analisis hubungan antara penilaian kinerja dosen oleh mahasiswa, kehadiran dosen, dan nilai kelulusan mahasiswa,” Media Inform., vol. 2, no. 1, 2004.
A. Mulyanto, “Penerapan Metode Fuzzy Tsukamoto Untuk Menentukan Jumlah Jam Overtime Pada Produksi Barang di PT Asahi Best Base Indonesia (ABBI) Bekasi,” J. Inform. SIMANTIK, vol. 1, no. 1, pp. 1–11, 2016.
W. Kaswidjanti, “Implementasi Fuzzy Inference System Metode Tsukamoto Pada Pengambilan Keputusan Pemberian Kredit Pemilikan Rumah,” Telemat. J. Inform. dan Teknol. Inf., vol. 10, no. 2, 2014.