Effectiveness of horizontal and vertical constructed wetlands performance systems with some vegetation on domestic waste concentrations
##plugins.themes.bootstrap3.article.main##
Abstract
Population growth has resulted in the demand for waste water reclamation increasing rapidly. CW systems are an inexpensive technology with little or no energy requirements and very minimal equipment requirements, resulting in low construction costs. This research will test improving the quality of domestic wastewater using a Vertical Flow Artificial Wetland (VFCW) and Horizontal Flow Artificial Wetland (HFCW) system using kangkong, water hyacinth and lotus vegetation. The results of the research carried out can be concluded as follows: in water spinach vegetation there is no difference in the concentration of BOD, COD, DO, Oil and Fat, Detergent, Ammonia, and total coliform parameters of the horizontal CW type and the vertical CW type. In water hyacinth vegetation there were no differences in the concentrations of BOD, COD, DO, Oil and Fat, Detergent, Ammonia, and total coliform parameters of the horizontal CW type and vertical CW type. In lotus vergetation there were no differences in the concentration of BOD, COD, DO, Oil and Fat, Detergent, Ammonia, and total coliform parameters of the horizontal CW type and vertical CW type. In the research results, there is no significant difference in the horizontal CW and vertical CW types in improving water quality, especially domestic waste, you can use horizontal CW or vertical CW types.
##plugins.themes.bootstrap3.article.details##
2. Arifiansyah S, Nurjasmi R, Ruswadi R. Pengaruh pupuk organik terhadap pertumbuhan dan kandungan klorofil Wheatgrass (Triticum aestivum L.). J Ilm Respati. 2020;11(2):82–92.
3. Rachmawati E. Metode Budidaya Microgreen: Tanaman Kecil Kaya Nutrisi Segar Dan Menyehatkan. Penerbit P4I; 2023.
4. Salsabila R, Purbajanti dan E. Respon pertumbuhan stek soka mini (Ixora coccinea) terhadap konsentrasi pemberian dan lama perendaman zpt alami ekstrak bawang merah (The growth response of cutting of soka mini (Ixora coccinea) to concentration and submersion time of onion extract as nat. J Agro Complex [Internet]. 2021;5(1):57–65. Available from: http://ejournal2.undip.ac.id/index.php/joac
5. Isyraq M, Amalia L, Aisyah I. Pengaruh air kelapa sebagai sitokinin organik dan sukrosa terhadap pertumbuhan protocorm anggrek (Phalaenopsis hybrid MP 253 x F1 3363 (M)) in vitro. Kultivasi. 2021;20(1):27.
6. Siregar DA. Pemanfaatan Ekstrak Bawang Merah (Allium cepa L.) Terhadap Viabilitas Benih Kakao (Theobroma kakao L.). J Educ Dev [Internet]. 2018;3(2):23–6. Available from: http://download.garuda.kemdikbud.go.id/article.php?article=795417&val=13041&title=PEMANFAATAN EKSTRAK BAWANG MERAH Allium cepa L TERHADAP VIABILITAS BENIH KAKAO Theobroma kakao L
7. Mustakim, Farhatul Wahidah B, Al-fauzy A. Pengaruh Penambahan Air Kelapa Terhadap Pertumbuhan Stek Mikro Tanaman Krisan (Chrysanthemum indicum) Secara In Vitro. Pros Semin Nas Mikrobiol Kesehat dan Lingkung. 2015;29:181–7.
8. Milawati Lalla SP. BIOSTIMULAN UNTUK TANAH DAN TANAMAN. Penerbit Qiara Media; 2022.
9. Oematan SS, Gandut YRY, Ndiwa ASS, Huki CFFH. Pengaruh Komposisi Media Tanam (Perbandingan Tanah, Pupuk Kandang, Dan Arang Sekam) Terhadap Pertumbuhan Dan Hasil Tanaman Kangkung Darat (Ipomoea reptans Poir) Effect Of Composition Of Planting Media (Comparative Soil, Cost Fertilizer, And Husk Charcoal) On Growth And Production Of Land Kale (Ipomoea reptans Poir). J Wana Lestari. 2022;04(2):314–22.
10. Kamariah N, Rahmi R, Jeki J. Respons Pertumbuhan Jagung Ungu (Zea Mays L.) Pada Berbagai Cekaman Salinitas. AGROTEKBIS J ILMU Pertan. 2022;10(1):125–34.
11. Zahra N, Al Hinai MS, Hafeez MB, Rehman A, Wahid A, Siddique KHM, et al. Regulation of photosynthesis under salt stress and associated tolerance mechanisms. Plant Physiol Biochem. 2022;178:55–69.
12. Hendriyani IS, Nurchayati Y, Setiari N. Kandungan klorofil dan karotenoid Kacang Tunggak (Vigna unguiculata (L.) Walp.) pada umur tanaman yang berbeda. J Biol Trop. 2018;1(2):38–43.
13. Sisriana S, Suryani S, Sholihah SM. Pengaruh Berbagai Media Tanam Terhadap Pertumbuhan dan Kadar Pigmen Microgreens Selada. J Ilm Respati. 2021;12(2):163–76.
14. Ashar JR, Farhanah A, Simatupang DF, Friska M, Ismayanti R, Hamzah P. Genetika Tanaman. TOHAR MEDIA; 2024.
15. Hwe SS. Studi Literatur Pengaruh Intensitas Cahaya dan Panjang Gelombang Cahaya Terhadap Kandungan Β–Karoten Pada Microgreens Red Pak Choi (Brassica rapa var. Chinensis,‘Rubi F1’) DAN Red Mustard (Brassica juncea (L.)‘Red Lion’). 2021;
16. Majid I, Kehinde BA, Dar B, Nanda V. Advances in Plant Sprouts: Phytochemistry and Biofunctionalities. Springer Nature; 2023.
17. Pratiwi A, Krisjayanti EW, Utami I. Respon pertumbuhan tomat cherry (Solanum lycopersicum var. cerasiforme) terhadap konsentrasi salinitas NaCl. Biosci J Ilm Biol. 2021;9(2):494–503.
18. Tripama B, Siswoyo TA, Dewanti P, Soeparjono S. Response of NaCl stress to morphology and content of phenolic compounds, flavonoids, and antioxidant activity in clove seeds (Syzycum aromaticum. L). J Penelit Pertan Terap. 2023;23(1):81–93.
19. Choudhary S, Kaurav H, Chaudhary G. Wheatgrass (Triticum aestivum Linn.): a potential substitute of human blood in traditional system of medicine. Asian J Pharm Clin Res. 2021;14(6):43–7.
20. Chakraborty R, Kashyap P, Gadhave RK, Jindal N, Kumar S, Guiné RPF, et al. Fluidized Bed Drying of Wheatgrass: Effect of Temperature on Drying Kinetics, Proximate Composition, Functional Properties, and Antioxidant Activity. Foods. 2023;12(8):1576.
21. Moradi S, Kafi M, Aliniaeifard S, Salami SA, Shokrpour M, Pedersen C, et al. Blue light improves photosynthetic performance and biomass partitioning toward harvestable organs in saffron (Crocus sativus L.). Cells. 2021;10(8):1994.
22. Devi CB, Bains K, Kaur H, Ram H. Nutritional composition, bioactive compounds and free radical scavenging activity of wheatgrass (Triticum aestivum L.) as influenced by harvesting stages and cultivation method. Indian J Nat Prod Resour (IJNPR)[Formerly Nat Prod Radiance (NPR)]. 2020;11(2):118–23.
23. Dinler BS, Cetinkaya H, Sergiev I, Shopova E, Todorova D. Paclobutrazol induced non-enzymatic antioxidants and polyamine levels in soybean plants grown under salinity stress. Botanica. 2021;27:149–59.
24. Surówka E, Potocka I, Dziurka M, Wróbel-Marek J, Kurczyńska E, Żur I, et al. Tocopherols mutual balance is a key player for maintaining Arabidopsis thaliana growth under salt stress. Plant Physiol Biochem. 2020;156:369–83.
25. Ebert AW. Sprouts and microgreens—Novel food sources for healthy diets. Plants. 2022;11(4):571.
26. Halawani RF, AbdElgawad H, Aloufi FA, Balkhyour MA, Zrig A, Hassan AHA. Synergistic effect of carbon nanoparticles with mild salinity for improving chemical composition and antioxidant activities of radish sprouts. Front Plant Sci. 2023;14:1158031.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.