Optimization of distillation column reflux ratio for distillate purity and process energy requirements
##plugins.themes.bootstrap3.article.main##
Abstract
Recovering ethanol solutions from filtration, extraction, and stripping operations is done in the distillation column, a separation process unit in the carboxymethyl cellulose production plant. Because the ethanol produced by these techniques is produced at a lower concentration, distillation is required to purify the ethanol. This procedure can raise the concentration of ethanol by separating it from the mixture. The concentration of the ethanol solution needs to be 85% in order to be reused. This case study aims to determine the optimal reflux ratio for a distillation column, model the process in both real-world and manual calculation scenarios using Aspen Hysys software, and evaluate the effects of increasing the reflux ratio. Manual computations yielded a reflux ratio result of 0.91814. In the meantime, an ethanol concentration of 85% is produced by the reflux ratio of 1.080 that is derived from the Aspen Hysys simulation. By generating a heat flow of 1.889 x 106 kJ/h, the ideal reflux ratio of 1.080 was reached, whereas the Aspen Hysys simulation yielded a reflux ratio of 0.91814. This allowed for an ethanol concentration of 85%. The Aspen Hysys simulation yields an ethanol concentration of 82.11% and a heat flow of 1.399 x 106 kJ/h. The ethanol concentration and reboiler steam heat flow are impacted by the reflux ratio value, according to the reflux ratio results. The amount of reboiler steam heat generated may become linear with a larger reflux ratio, and the energy required to complete the distillation process may likewise rise.
##plugins.themes.bootstrap3.article.details##
B. Abolpour, S. Nasiri, and E. Khosravi, “Economic optimization of the reflux ratio of two components stage distillation columns,” Environmental Energy and Economic Research, vol. 3, no. 1, pp. 11–21, 2019, doi: 10.22097/eeer.2019.145503.1040.
R. Amrullah, S. Nurjanah, A. Widyasanti, and M. Muhaemin, “Kajian pengaruh rasio refluks terhadap karakteristik minyak nilam hasil distilasi fraksinasi,” Teknotan, vol. 11, no. 2, pp. 77–88, 2017, doi: 10.24198/jt.vol11n2.8.
I. J. Sidabutar, A. Widyasanti, S. Nurjanah, B. Nurhadi, T. Rialita, and E. Lembong, “Kajian rasio refluks pada isolasi beberapa senyawa minyak nilam (Pogostemon cablin Benth) dengan metode distilasi fraksinasi,” JRPB, vol. 8, no. 1, pp. 71–78, 2020, doi: 10.29303/jrpb.v8i1.160.
A. A. Rahima and E. N. Dewi, “Simulasi pengaruh reflux ratio pada proses pemurnian etil asetat dengan distilasi ekstraktif menggunakan chemcad,” CMG, vol. 4, no. 1, pp. 6–11, 2020, doi: 10.30872/cmg.v4i1.4071.
B. Abolpour and A. Mohebbi, “Optimization of the reflux ratio of benzene-toluene stage distillation columns by the Cuckoo algorithm,” Pet. Sci., vol. 11, no. 3, pp. 446–453, 2014, doi: 10.1007/s12182-014-0360-3.
W. E. Pratomo, S. Agustina, and T. Kurniawan, “Energy analysis study of coal tar distillation process by feed splitting method,” tjst, vol. 17, no. 2, pp. 281–288, 2021, doi: 10.36055/tjst.v17i2.13023.
A. Sopurta, P. Siregar, and E. Ekawati, “Perancangan sistem simulasi hysys & iintegrasi dengan programmable logic controller-human machine interface: Studi kasus pada plant kolom distilasi etanol-air,” J.Oto.Ktrl.Inst (J.Auto.Ctrl.Inst), vol. 6, no. 1, pp. 1–9, 2014. https://journals.itb.ac.id/index.php/joki/article/view/3975.
M. P. Sutardi, M. I. Fardiansyah, F. Fauzia, and D. A. Sari, “Program simulasi Aspen Hysis bagi mahasiswa teknik kimia di semester awal,” in Prosiding Seminar Nasional Universitas Islam Syekh Yusuf, Universitas Islam Syekh Yusuf: Universitas Islam Syekh Yusuf, Dec. 2020, pp. 1370–1373. doi: 10.31219/osf.io/e3t72.
N. B. Chowdhury, Z. Hasan, and A. Biplob, “Hysys simulation of a sulfuric acid plant and optimization approach of annual profit,” Journal of Science (JOS), vol. 2, no. 4, pp. 179–182, 2012. Available: https://www.researchgate.net/search.Search.html?query=Hysys+simulation+of+a+sulfuric+acid+plant+and+optimization+approach+of+annual+profit&type=publication.
S. K. Mondal, M. R. Uddin, S. Majumder, and J. Pokhrel, “HYSYS simulation of chemical process equipment,” Chem Eng Process, pp. 1–7, 2015, doi: 10.13140/RG.2.1.4186.9289.
E. H. Alshbuki, M. M. Bey, and A. Ala. Mohamed, “Simulation production of dimethylether (DME) from dehydration of methanol using aspen hysys,” SIJCMS, vol. 03, no. 02, pp. 13–18, Feb. 2020, doi: 10.36348/sijcms.2020.v03i02.002.
J. A. Labarta, M. M. Olaya, and A. F. Marcilla, “What does the NRTL look like? Determination of boundaries for different fluid phase equilibrium regions,” AIChE Journal, vol. 68, no. 10, pp. 1–14, 2022, doi: 10.1002/aic.17805.
M. Y. Pratama, A. Hizbiyati, and J. Rizkiana, “Simulation study of polyglycerol separation with distillation column using aspen hysis,” in Proceedings of the 4th ITB Graduate School Conference, Bandung: Institute Teknologi Bandung, 2023, pp. 564–573. [Online]. Available: https://gcs.itb.ac.id/proceeding-igsc/index.php/igsc/article/view/171
V. S. Ulfa, H. D. Kharisma, and D. A. Sari, “Optimasi akademisi dan mata kuliah teknik kimia melalui peran praktisi industri,” in Prosiding Seminar Nasional Universitas Islam Syekh Yusuf, Universitas Islam Syekh Yusuf: Universitas Islam Syekh Yusuf, Dec. 2020, pp. 1379–1383. doi: 10.31219/osf.io/uf45p.
I. A. Fitria, D. A. Sari, V. P. Fahriani, and M. Djaeni, “Shell and tube heat exchanger fouling factor via Heat Transfer Research Inc (HTRI) software,” Reka Buana: Jurnal Ilmiah Teknik Sipil dan Teknik Kimia, vol. 7, no. 2, pp. 104–113, 2022, doi: https://doi.org/10.33366/rekabuana.v7i2.4030.
M. K. Pasha, L. Dai, D. Liu, M. Guo, and W. Du, “An overview to process design, simulation and sustainability evaluation of biodiesel production,” Biotechnology for Biofuels, vol. 14, no. 129, pp. 1–23, 2021, doi: https://doi.org/10.1186/s13068-021-01977-z.
C. L. Yaws, The Yaws handbook of vapor pressure: Antoine coefficients, Second edition. Amsterdam ; Boston: Elsevier/GPP, Gulf Professional Publishing is an imprint of Elsevier, 2015. [Online]. Available: https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure.
A. D. K. Wibowo and L. A. Yoshi, Dasar-dasar simulasi proses dengan aspen hysis. Yogyakarta: Graha Ilmu, 2021. [Online]. Available: http://repository.iti.ac.id/handle/123456789/640
H. G. Ibrahim and M. M. B. Mahmod, “A comparative study for biodiesel production by reactive distillation: simulation process,” Journal of Humanities and Applied Science (JHAS), vol. 29, pp. 174–185, 2016. Available: https://asmarya.edu.ly/journal1/wp-content/uploads/2017/07/29_13.pdf.
N. A. Ibrahim and M. A. Ahmad Zaini, “Parametric investigation of fixed-tray, semi-continuous distillation column for ethanol separation from water,” Jurnal Teknologi, vol. 78, no. 11, pp. 85–92, 2016, doi: 10.11113/.v78.7448.
K. Im-orb, A. Arpornwichanop, and L. Simasatitkul, “Process intensification approach for design and optimization of biodiesel production from palm fatty acid distillate,” Biotechnology Reports, vol. 30, pp. 1–14, 2021, doi: 10.1016/j.btre.2021.e00622.
K. Haryani, “Optimasi kolom pemisahan di kilang propylene Pertamina RU IV Cilacap,” Jurnal Rekayasa Mesin, vol. 15, no. 2, pp. 126–136, 2020, doi: 10.32497/jrm.v15i2.1956.
S. S. O. Silva, M. R. Nascimento, R. J. P. Lima, F. M. T. Luna, and C. L. Cavalcante Jr., “Experimental and simulation studies for purification and etherification of glycerol from the biodiesel industry,” Engineering, preprint, Oct. 2023. doi: 10.20944/preprints202310.1925.v1.
T. Mahdi and A. E. Al-Kawaz, “A simulation study of enhanced distillation using ultrasound waves for the separation of azeotropic mixtures,” AMR, vol. 11, no. 1, pp. 97–107, 2018, doi: 10.4028/www.scientific.net/AMR.909.83.
H. N. H and R. S. Weri, “Penentuan rasio refluks optimum berdasarkan kondisi umpan yang digunakan pada kolom distilasi,” Majalah Inti Teknologi Industri (SAINTI), vol. 15, no. 2, pp. 73–76, 2018. Available: http://ejurnal.poltekatipdg.ac.id/index.php/SAINTI/article/download/163/120.
L. K. Wibowo et al., “Perkiraan biaya modal spesifik atas pabrik multi efek distilasi,” inteka, vol. 7, no. 2, pp. 30–38, 2022, doi: 10.31942/inteka.v7i2.6899.
O. A. C, A. M. O, O. J. I, and N. C. N, “Saving energy and tray numbers in ethylene-ethane distillation towers by vapor permeation membrane load sharing,” Chemical and Process Engineering Research, vol. 42, no. 32–43, p. 2016. Available: https://core.ac.uk/download/pdf/234689237.pdf.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.