Experimental study of a breastshot waterwheel with the degree of inclination of the nozzle spray against the tip speed ratio
##plugins.themes.bootstrap3.article.main##
Abstract
The energy crisis is a severe problem facing the world, including Indonesia. Along with the times, innovation is needed to implement sustainable energy. Non-fossil energy sources have not been widely used, and efforts are still needed to utilize these energy sources. The waterwheel was the first device used in water production. One of the innovations for the sustainability of non-fossil energy is to make a waterwheel. There are still several waterwheels in Indonesia, but an investigation is needed to determine their condition. So in this study, investigating the breastshot water wheel uses a nozzle-based construction with variations in the degree of inclination of the spray against the TSR value. The results showed that the greater the inclination of the nozzle angle, the higher the velocity of the water flow when it enters the wheel. Adding water speed to this wheel will increase the momentum and tangential force. An increase in the tangential force will increase the wheel's torque so that the wheel strength will increase. This increase in power will, of course, result in greater efficiency, thereby increasing the tip speed ratio (TSR).
##plugins.themes.bootstrap3.article.details##
M. T. Masood and F. Shah, “Dilemma of third world countries-problems facing pakistan energy crisis a case-in-point,” Int. J. Bus. Manag., vol. 7, no. 5, pp. 231–246, 2012, doi: http://dx.doi.org/10.5539/ijbm.v7n5p231.
K. K. Perry, “For politics, people, or the planet? The political economy of fossil fuel reform, energy dependence and climate policy in Haiti,” Energy Res. Soc. Sci., vol. 63, no. 1, p. 101397, 2020, doi: https://doi.org/10.1016/j.erss.2019.101397.
K. Solaun and E. Cerda, “Climate change impacts on renewable energy generation. A review of quantitative projections,” Renew. Sustain. Energy Rev., vol. 116, no. 1049415, pp. 1–16, 2019, doi: 10.1016/j.rser.2019.109415.
A. K. Gerlak, J. Weston, B. McMahan, R. L. Murray, and M. Mills-Novoa, “Climate risk management and the electricity sector,” Clim. Risk Manag., vol. 19, no. December 2017, pp. 12–22, 2018, doi: 10.1016/j.crm.2017.12.003.
M. Mohsin, Q. Abbas, J. Zhang, M. Ikram, and N. Iqbal, “Integrated effect of energy consumption, economic development, and population growth on CO 2 based environmental degradation: a case of transport sector,” Environ. Sci. Pollut. Res., vol. 26, no. November, pp. 32824–32835, 2019, doi: https://doi.org/10.1007/s11356-019-06372-8.
H. Schandl et al., “Decoupling global environmental pressure and economic growth: scenarios for energy use, materials use and carbon emissions,” J. Clean. Prod., vol. 132, no. 20, pp. 45–56, 2016, doi: https://doi.org/10.1016/j.jclepro.2015.06.100.
A. M. Omer, “Energy, environment and sustainable development,” Renew. Sustain. energy Rev., vol. 12, no. 9, pp. 2265–2300, 2008, doi: https://doi.org/10.1016/j.rser.2007.05.001.
O. Ellabban, H. Abu-Rub, and F. Blaabjerg, “Renewable energy resources: Current status, future prospects and their enabling technology,” Renew. Sustain. energy Rev., vol. 39, no. 1, pp. 748–764, 2014, doi: https://doi.org/10.1016/j.rser.2014.07.113.
R. E. F. I. 2017, “Renewable Energy: Keystone for Universal Electrification_and Energy Security,” The 3rd International Conference and Exhibition on Geothermal, Hydro, Solar, Wind, Ocean Wave, and Bio Energies., 2017, 2017. https://www.there4i.org/.
B. A. Nasir, “Design of High Efficiency Cross-Flow Turbine for Hydro-Power Plant,” Int. J. Eng. Adv. Technol., vol. 2, no. 3, pp. 2249–8958, 2013.
K. E. dan S. D. M. (ESDM), “Pemerintah Buka Ruang Libatkan Milenial Kembangkan EBT,” Kementerian Energi dan Sumber Daya Mineral (ESDM), 2020. http://ebtke.esdm.go.id/post/2020/09/26/2635/pemerintah.buka.ruang.libatkan.milenial.kembangkan.ebt.
M. O. E. and M. Resources and R. of Indonesia, Handbook of Energy & Economic Statistics of Indonesia, 1st ed., vol. 1, no. 1. Jakarata, 2017.
J. A. Razak, Y. Ali, M. A. Alghoul, M. Said Zainol, A. Zaharim, and K. Sopian, “Application of Crossflow Turbine in Off-Grid Pico Hydro Renewable Energy System,” Proceeding Am. -Math, vol. 1, no. 1, pp. 519–526, 2010.
R. E. P. IRENA, Renewable Energy Prospects: Indonesia, a REmap analysis,. Abu Dhabi: International Renewable Energy Agency (IRENA), 2017.
T. Pujol and L. Montoro, “High hydraulic performance in horizontal waterwheels,” Renew. Energy, vol. 35, no. 11, pp. 2543–2551, 2010, doi: https://doi.org/10.1016/j.renene.2010.03.025.
M. Asim et al., “Design and Parametric Optimization of the High-Speed Pico Waterwheel for Rural Electrification of Pakistan,” Sustainability, vol. 14, no. 11, p. 6930, 2022, doi: https://doi.org/10.3390/su14116930.
A. M. Makarieva and V. G. Gorshkov, “Biotic pump of atmospheric moisture as driver of the hydrological cycle on land,” Hydrol. earth Syst. Sci., vol. 11, no. 2, pp. 1013–1033, 2007, doi: https://doi.org/10.5194/hess-11-1013-2007.
S. Baur, L. Geß, A.-K. Seppälä, and J. Eisner, “Low-Tech Waterwheel-Concept for a Simple and Small Hydro Power System for Remote Areas in Nepal,” in 5th International Conference on the Developments in Renewable Energy Technology (ICDRET’18), 2018, pp. 1–4, [Online]. Available: https://mediatum.ub.tum.de/1446887.
Kaprawi, “Pengaruh Geometri Sudu Dari Turbin Air Darrieus Terhadap Kinerjanya,” in Prosiding Seminar Nasional AVoER ke-3, 2011, pp. 1–8, [Online]. Available: http://repository.unsri.ac.id/7407/1/PROSIDING_AVOER_2011kafrawi.pdf.
Budiarso, Helmizar, Warjito, A. Nuramal, W. Ramadhanu, and D. Adanta, “Performance of breastshot waterwheel in run of river conditions,” in AIP Conference Proceedings 6 May 2020; 2227 (1): 020014, 2020, vol. 2227, no. 020014, pp. 1–7, doi: 10.1063/5.0000940.
D. Adanta, Budiarso, and Warjito, “The effect of channel slope angle on breastshot waterwheel turbine performance by numerical method,” Energy Reports, vol. 6, no. 2, pp. 606–610, 2020, doi: 10.1016/j.egyr.2019.11.126.
M. Al-Dabbagh, “Investigation the Performance of Stream Water Wheel Turbines using CFD Techniques,” in International Conference on Research in Education and Science (ICRES), 2018, vol. 2, pp. 354–360, [Online]. Available: http://www.epstem.net/en/download/article-file/528352.
E. Quaranta, “Investigation and optimization of the performance of gravity water wheels,” Politecnico di Torino, 2017.
A. Bachan, N. Ghimire, J. Eisner, S. Chitrakar, and H. P. Neopane, “Numerical analysis of low-tech overshot water wheel for off grid purpose,” in Journal of Physics: Conference Series, 2019, vol. 1266, no. 1, p. 12001, doi: 10.1088/1742-6596/1266/1/012001.
M. H. Kurniawan, R. Soenoko, Winarto, and A. Sunarso, “Studi Eksperimental Performance Kincir Air Breastshot Dengan Menggunakan Nozzle,” Rekayasa Mesin, vol. 12, no. 3, pp. 633 – 642, 2021, doi: https://doi.org/10.21776/ub.jrm.2021.012.03.13.
L. Varpio, E. Paradis, S. Uijtdehaage, and M. Young, “The distinctions between theory, theoretical framework, and conceptual framework,” Acad. Med., vol. 95, no. 7, pp. 989–994, 2020, doi: https://doi.org/10.1097/ACM.0000000000003075.
Y. Stern, “What is cognitive reserve? Theory and research application of the reserve concept,” J. Int. Neuropsychol. Soc., vol. 8, no. 3, pp. 448–460, 2002, doi: https://doi.org/10.1017/S1355617702813248.
O. Cleynen, E. Kerikous, S. Hoerner, and D. Thévenin, “Characterization of the performance of a free-stream water wheel using computational fluid dynamics,” Energy, vol. 165, no. 2, pp. 1392–1400, 2018, doi: https://doi.org/10.1016/j.energy.2018.10.003.
D. P. Sari et al., “Performance of undershot waterwheel in pico scale with difference in the blades number,” J. Brazilian Soc. Mech. Sci. Eng., vol. 44, no. 3, p. 107, 2022, doi: https://doi.org/10.1007/s40430-022-03430-0.
P. K. Talukdar, V. Kulkarni, and U. K. Saha, “Field-testing of model helical-bladed hydrokinetic turbines for small-scale power generation,” Renew. Energy, vol. 127, no. November, pp. 158–167, 2018, doi: https://doi.org/10.1016/j.renene.2018.04.052.
B. Wahyudi, A. Faizin, and S. Soeparman, “Increasing efficiency of overshot waterwheel with overflow keeper double nozzle (OKDN) by using hydraulic ram system,” in Applied mechanics and materials, 2013, vol. 330, pp. 209–213, [Online]. Available: https://www.scientific.net/AMM.330.209.
S. Soni and M. Taufik, “Design and assembly of fused filament fabrication (FFF) 3D printers,” Mater. Today Proc., vol. 46, no. 11, pp. 5233–5241, 2021, doi: https://doi.org/10.1016/j.matpr.2020.08.627.
T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” Compos. Part B Eng., vol. 143, no. June, pp. 172–196, 2018, doi: https://doi.org/10.1016/j.compositesb.2018.02.012.
M. H. Kurniawan, D. Iswanda, and A. K. Garside, “Perancangan dan Analisis Potensi Pembangkit Listrik Tenaga Mikro Hidro Di Aliran Sungai Brantas Sengkaling Kabupaten Malang Dalam Rangka Mencapai Target Energy Mix 23 % Pada Tahun 2025,” J. Appl. Mech. Eng. Renew. Energy, vol. 1, no. 2, pp. 46–52, 2021, doi: https://doi.org/10.52158/jamere.v1i2.235.
J. A. Hameed, A. T. Saeed, and M. H. Rajab, “Design and analysis of hydroelectric generation using waterwheel,” in 2018 9th International Renewable Energy Congress, IREC 2018, 2018, vol. 17788781, no. May, pp. 1–6, doi: 10.1109/IREC.2018.8362443.
Y. Jin et al., “Defect-related luminescent bur-like hydroxyapatite microspheres induced apoptosis of MC3T3-E1 cells by lysosomal and mitochondrial pathways,” Sci. China Life Sci., vol. 61, no. Maret, pp. 464–475, 2018, doi: https://doi.org/10.1007/s11427-017-9258-3.
Syafriyudin, B. Fajar, S. H. Winoto, and M. Facta, “Early Analysis of Jumping Water Effect on Breastshot Waterwheel for Microhydro Power Plant,” in Journal of Physics: Conference Series, 2018, vol. 953, no. 1, p. 012039, doi: 10.1088/1742-6596/953/1/012039.
C. Stout et al., “Efficiency Improvement of Vertical Axis Wind Turbines with an Upstream Deflector,” Energy Procedia, vol. 118, no. 1, pp. 141–148, 2017, doi: https://doi.org/10.1016/j.egypro.2017.07.032.
R. Boli, A. Makhsud, and M. Tahir, “Analisis Daya Output dan Efisiensi Kincir Air Sudu Miring yang Bekerja pada Saluran Horizontal,” Gorontalo J. Infrastruct. Sci. Eng., vol. 1, no. 2, pp. 1–7, 2018, doi: https://doi.org/10.32662/gojise.v1i2.423.
A. H. Elbatran, O. B. Yaakob, Y. M. Ahmed, and H. M. Shabara, “Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review,” Renew. Sustain. Energy Rev., vol. 43, no. 1, pp. 40–50, 2015, doi: https://doi.org/10.1016/j.rser.2014.11.045.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.