Preliminary in silico study of a novel paratransgenic weapon against malaria Genetically modifying wild plasmodium populations via recombinant mosquito symbiont
##plugins.themes.bootstrap3.article.main##
Abstract
Malaria is an infectious disease caused by Plasmodium spp., a protist whose infection is spread by Anopheles mosquito as a vector. A potential method to counter the infection is through paratransgenesis, a promising genetic control approach. This study proposed a new approach by using a transgene carried in a modified Ti plasmid hosted in Asaia bacterium to carry out two purposes: sensing the presence of Plasmodium protein biomarkers and transferring the toxin transgene to the parasite upon detection, thereby killing it without harming the Asaia carrier. The biosensor mechanism was created by repurposing a TonB dependent iron-uptake transport pathway to transcribe the vir genes of Agrobacterium tumefaciens that facilitate the gene transfer. The aim of this in silico project was to serve as a preliminary study on the likelihood of success of the aforementioned biosensor mechanism. This study utilized Alphafold and RCSB (Research Collaboratory for Structural Bioinformatic Protein Data Bank). As for the research tools: PyMOL, ClusPro website, and PRODIGY (PROtein binDIng enerGY prediction) server was used for data preparation, protein-protein docking and binding affinity analysis respectively. The results were assessed with t-test to analyze the significance of the binding affinity, in comparison to other studies that employed similar methods. The result showed Plasmodium protein GGCS (Gamma-glutamylcysteine synthetase) having the highest binding affinity with FecA (Fe(3+) dicitrate transport protein A). The preliminary data suggested that introducing the toxin transgene may be possible through vir gene transcription from the TonB pathway.
##plugins.themes.bootstrap3.article.details##
Cohuet, A., Harris, C., Robert, V., and Fontenille, D. (2010) Evolutionary forces on Anopheles: what makes a malaria vector?. Trends in parasitology 26, 130-136.
Milner, D. A. (2018) Malaria pathogenesis. Cold Spring Harbor perspectives in medicine 8.
Clements, A. N. (2023) The biology of mosquitoes, Volume 1: Development, nutrition and reproduction.
Aly, A. S. I., Vaughan, A. M., and Kappe, S. H. I. (2009) Malaria parasite development in the mosquito and infection of the mammalian host. Annual Review of Microbiology 63, 195–221.
Crutcher, J. M., Hoffman, S. L., and Baron, S. (Eds.). (1996) Medical Microbiology. University of Texas Medical Branch at Galveston, Galveston, TX.
Venugopal, K., Hentzschel, F., Valkiūnas, G., and Marti, M. (2020) Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. Nature Reviews Microbiology 18, 177–189.
Lalremruata, A., Jeyaraj, S., Engleitner, T., Joanny, F., Lang, A., Bélard, S., ... and Held, J. (2017) Species and genotype diversity of Plasmodium in malaria patients from Gabon analysed by next generation sequencing. Malaria journal 16, 1-11.
Plowe, C. V. (2015) Vaccine-resistant malaria. New England Journal of Medicine 373, 2082-2083.
Coppi, A., Natarajan, R., Pradel, G., Bennett, B. L., James, E. R., Roggero, M. A., and Sinnis, P. (2011) The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host. Journal of Experimental Medicine 208, 341-356.
Gandhi, K., Thera, M. A., Coulibaly, D., Traore, K., Guindo, A. B., Ouattara, A., ... and Plowe, C. V. (2014) Variation in the circumsporozoite protein of Plasmodium falciparum: vaccine development implications. PLoS One 9.
Pates, H., and Curtis, C. (2005) Mosquito behavior and vector control. Annu. Rev. Entomol. 50, 53-70.
Wilke, A. B. B., and Marrelli, M. T. (2015) Paratransgenesis: a promising new strategy for mosquito vector control. Parasites & vectors 8, 1-9.
Wang, S., and Jacobs-Lorena, M. (2017) Paratransgenesis applications: fighting malaria with engineered mosquito symbiotic bacteria. Arthropod Vector: Controller of Disease Transmission 1, 219-234.
Liu, N. (2015) Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. Annual review of entomology 60, 537-559.
Curtis, C. F. (1968) A possible genetic method for the control of insect pests, with special reference to tsetse flies (Glossina spp.). Bulletin of Entomological Research 57, 509-523.
World Health Organization. (2021) Guidance framework for testing genetically modified mosquitoes.
Jasinskiene, N., Coleman, J., Ashikyan, A., Salampessy, M., Marinotti, O., and James, A. A. (2007) Genetic control of malaria parasite transmission: threshold levels for infection in an avian model system. American Journal of Tropical Medicine and Hygiene 76, 1072-1078.
Wilke, A. B. B., and Marrelli, M. T. (2012) Genetic control of mosquitoes: population suppression strategies. Revista do Instituto de Medicina Tropical de São Paulo 54, 287-292.
Ratcliffe, N. A., Furtado Pacheco, J. P., Dyson, P., Castro, H. C., Gonzalez, M. S., Azambuja, P., and Mello, C. B. (2022) Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasites & Vectors 15, 112.
Coutinho-Abreu, I. V., Zhu, K. Y., & Ramalho-Ortigao, M. (2010). Transgenesis and paratransgenesis to control insect-borne diseases: Current status and future challenges. Parasitology International, 59(1), 1–8. https://doi.org/10.1016/j.parint.2009.10.002
Gonzalez-Ceron, L., Santillan, F., Rodriguez, M. H., Mendez, D., & Hernandez-Avila, J. E. (2003). Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. Journal of medical entomology, 40(3), 371-374.
Straif, S. C., Mbogo, C. N., Toure, A. M., Walker, E. D., Kaufman, M., Toure, Y. T., & Beier, J. C. (1998). Midgut bacteria in Anopheles gambiae and An. funestus (Diptera: Culicidae) from Kenya and Mali. Journal of medical entomology, 35(3), 222-226.
Dutkiewicz, J., Mackiewicz, B., Kinga Lemieszek, M., Golec, M., & Milanowski, J. (2016). Pantoea agglomerans: A mysterious bacterium of evil and good. part III. deleterious effects: Infections of humans, animals and plants. Annals of Agricultural and Environmental Medicine, 23(2), 197–205. https://doi.org/10.5604/12321966.1203878
Dong, Y., Manfredini, F., & Dimopoulos, G. (2009). Implication of the Mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathogens, 5(5). doi:10.1371/journal.ppat.1000423
Thomas, M. B., & Read, A. F. (2007). Can fungal biopesticides control malaria?. Nature Reviews Microbiology, 5(5), 377-383.
Fang, W., Vega-Rodríguez, J., Ghosh, A. K., Jacobs-Lorena, M., Kang, A., & St. Leger, R. J. (2011). Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science, 331(6020), 1074-1077.
Pidiyar, V. J., Jangid, K., Patole, M. S., & Shouche, Y. S. (2004). Studies on cultured and uncultured microbiota of wild Culex quinquefasciatus mosquito midgut based on 16s ribosomal RNA gene analysis. The American journal of tropical medicine and hygiene, 70(6), 597-603.
Johnson, R. M., & Rasgon, J. L. (2018). Densonucleosis viruses (‘densoviruses’) for mosquito and pathogen control. Current opinion in insect science, 28, 90-97.
Charon, J., Grigg, M. J., Eden, J. S., Piera, K. A., Rana, H., William, T., ... & Holmes, E. C. (2019). Novel RNA viruses associated with Plasmodium vivax in human malaria and Leucocytozoon parasites in avian disease. PLoS Pathogens, 15(12), e1008216.
Horsáková, I., Voldrich, M., Cerovsky, M., Dedlackova, P., Sicnerova, P., & Ulbrich, P. (2009). Asaia sp. as a bacterium decaying the packaged still fruit beverages. Czech Journal of Food Sciences, 27(Special Issue 1), S362-S365.
Sarwar, M. S., Jahan, N., & Shahbaz, F. (2018). Molecular detection and characterization of Wolbachia pipientis from Culex quinquefasciatus collected from Lahore, Pakistan. The American Journal of Tropical Medicine and Hygiene, 98(1), 154.
Kambris, Z., Cook, P. E., Phuc, H. K., & Sinkins, S. P. (2009). Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science, 326(5949), 134-136.
Smith, R. C., & Barillas-Mury, C. (2016). Plasmodium oocysts: overlooked targets of mosquito immunity. Trends in parasitology, 32(12), 979-990.
Grogan, C., Bennett, M., Moore, S., & Lampe, D. (2021). Novel Asaia bogorensis signal sequences for Plasmodium inhibition in Anopheles stephensi. Frontiers in microbiology, 12, 633667.
Mancini, M. V., Spaccapelo, R., Damiani, C., Accoti, A., Tallarita, M., Petraglia, E., & Favia, G. (2016). Paratransgenesis to control malaria vectors: a semi-field pilot study. Parasites & vectors, 9(1), 1-9.
Favia, G., Ricci, I., Damiani, C., Raddadi, N., Crotti, E., Marzorati, M., ... & Daffonchio, D. (2007). Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proceedings of the National Academy of Sciences, 104(21), 9047-9051.
Conde, R., Zamudio, F. Z., Rodrı́guez, M. H., & Possani, L. D. (2000). Scorpine, an anti‐malaria and anti‐bacterial agent purified from Scorpion Venom. FEBS Letters, 471(2–3), 165–168. doi:10.1016/s0014-5793(00)01384-3
Hall, M. (2022). Killing mosquitoes. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK585185/.
EMBL-EBI. (2023). Frequently asked questions. Alphafold protein structure database. https://alphafold.ebi.ac.uk/faq. Accessed 15 Nov. 2023
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., & Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589.
WwPDB consortium. (2019). Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Research, 47(D1), D520–D528. https://doi.org/10.1093/nar/gky949
Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., & Vajda, S. (2017). The ClusPro web server for protein–protein docking. Nature protocols, 12(2), 255-278.
Kozakov, D., Hall, D. R., Beglov, D., Brenke, R., Comeau, S. R., Shen, Y., ... & Vajda, S. (2010). Achieving reliability and high accuracy in automated protein docking: ClusPro, PIPER, SDU, and stability analysis in CAPRI rounds 13–19. Proteins: Structure, Function, and Bioinformatics, 78(15), 3124-3130.
Kozakov, D., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall, D. R., & Vajda, S. (2013). How good is automated protein docking?. Proteins: Structure, Function, and Bioinformatics, 81(12), 2159-2166.
Yang, Y. X., Wang, P., & Zhu, B. T. (2022). Importance of interface and surface areas in protein-protein binding affinity prediction: A machine learning analysis based on linear regression and artificial neural network. Biophysical Chemistry, 283, 106762.
Sodhi, P. V., Sidime, F., Tarazona, D. D., Valdivia, F., & Levano, K. S. (2022). A closer look at Ace2 signaling pathway and processing during COVID-19 infection: Identifying possible targets. Vaccines, 11(1), 13. https://doi.org/10.3390/vaccines11010013.
Escobar, M. A., & Dandekar, A. M. (2003). Agrobacterium tumefaciens as an agent of disease. Trends in plant science, 8(8), 380-386.
Clark, D. P., Pazdernik, N. J., & McGehee, M. R. (2019). Chapter 23—Plasmids. Molecular Biology. 3rd ed. Elsevier (Academic Cell), 712-748.
Hoekema, A., Hirsch, P. R., Hooykaas, P. J., & Schilperoort, R. A. (1983). A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature, 303(5913), 179-180.
Hu, X., Zhao, J., DeGrado, W. F., & Binns, A. N. (2013). Agrobacterium tumefaciens recognizes its host environment using ChvE to bind diverse plant sugars as virulence signals. Proceedings of the National Academy of Sciences, 110(2), 678-683.
Stachel, S. E., & Zambryski, P. C. (1986). virA and virG control the plant-induced activation of the T-DNA transfer process of A. tumefaciens. Cell, 46(3), 325-333.
Jin, S. G., Prusti, R. K., Roitsch, T., Ankenbauer, R. G., & Nester, E. W. (1990). Phosphorylation of the VirG protein of Agrobacterium tumefaciens by the autophosphorylated VirA protein: essential role in biological activity of VirG. Journal of Bacteriology, 172(9), 4945-4950.
Aoyama, T., & Oka, A. (1990). A common mechanism of transcriptional activation by the three positive regulators, VirG, PhoB, and OmpR. FEBS letters, 263(1), 1-4.
Cho, H., & Winans, S. C. (2005). VirA and VirG activate the Ti plasmid repABC operon, elevating plasmid copy number in response to wound-released chemical signals. Proceedings of the National Academy of Sciences, 102(41), 14843-14848.
Gelvin, S. B. (2012). Traversing the cell: Agrobacterium T-DNA’s journey to the host genome. Frontiers in plant science, 3, 52.
Winans, S. C. (1992). Two-way chemical signaling in Agrobacterium-plant interactions. Microbiological reviews, 56(1), 12-31.
Noinaj, N., Guillier, M., Barnard, T. J., & Buchanan, S. K. (2010). Tonb-dependent transporters: Regulation, structure, and function. Annual Review of Microbiology, 64(1), 43–60. https://doi.org/10.1146/annurev.micro.112408.134247
Ferguson, A. D., Amezcua, C. A., Halabi, N. M., Chelliah, Y., Rosen, M. K., Ranganathan, R., & Deisenhofer, J. (2007). Signal transduction pathway of tonb-dependent transporters. Proceedings of the National Academy of Sciences, 104(2), 513–518. https://doi.org/10.1073/pnas.0609887104.
Celik, I., Abdellattif, M. H., & Tallei, T. E. (2022). An insight based on computational analysis of the interaction between the receptor-binding domain of the omicron variants and human angiotensin-converting enzyme 2. Biology, 11(5), 797.
Vega-Rodríguez, J., Franke-Fayard, B., Dinglasan, R. R., Janse, C. J., Pastrana-Mena, R., Waters, A. P., & Serrano, A. E. (2009). The glutathione biosynthetic pathway of Plasmodium is essential for mosquito transmission. PLoS pathogens, 5(2), e1000302.Ni, W., Yang, X., Yang, D., Bao, J., Li, R., Xiao, Y., & Gao, Z. (2020). Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Critical Care, 24(1), 1-10.
Kemner, J. M., Liang, X., & Nester, E. W. (1997). The Agrobacterium tumefaciens virulence gene chvE is part of a putative ABC-type sugar transport operon. Journal of bacteriology, 179(7), 2452-2458.
Wise, A. A., Voinov, L., & Binns, A. N. (2005). Intersubunit complementation of sugar signal transduction in VirA heterodimers and posttranslational regulation of VirA activity in Agrobacterium tumefaciens. Journal of bacteriology, 187(1), 213–223. https://doi.org/10.1128/JB.187.1.213-223.2005
Aoyama, T., & Oka, A. (1990). A common mechanism of transcriptional activation by the three positive regulators, VirG, PhoB, and OmpR. FEBS letters, 263(1), 1-4.
Gaj, T., Sirk, S. J., Shui, S. L., & Liu, J. (2016). Genome-editing technologies: principles and applications. Cold Spring Harbor perspectives in biology, 8(12), a023754.
Mancini, M. V., Spaccapelo, R., Damiani, C., Accoti, A., Tallarita, M., Petraglia, E., Rossi, P., Cappelli, A., Capone, A., Peruzzi, G., Valzano, M., Picciolini, M., Diabaté, A., Facchinelli, L., Ricci, I., & Favia, G. (2016). Paratransgenesis to control malaria vectors: a semi-field pilot study. Parasites & vectors, 9, 140. https://doi.org/10.1186/s13071-016-1427-3
Dehghan, H., Mosa-Kazemi, S. H., Yakhchali, B., Maleki-Ravasan, N., Vatandoost, H., & Oshaghi, M. A. (2022). Evaluation of anti-malaria potency of wild and genetically modified Enterobacter cloacae expressing effector proteins in anopheles stephensi. Parasites & Vectors, 15(1). https://doi.org/10.1186/s13071-022-05183-0.
Smith, R. C., & Barillas-Mury, C. (2016). Plasmodium oocysts: overlooked targets of mosquito immunity. Trends in parasitology, 32(12), 979-990.
Rami, A., Raz, A., Zakeri, S., & Dinparast Djadid, N. (2018). Isolation and identification of Asaia sp. in Anopheles spp. mosquitoes collected from Iranian malaria settings: steps toward applying paratransgenic tools against malaria. Parasites & vectors, 11, 1-8

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.