##plugins.themes.bootstrap3.article.main##

Yerik Afrianto Singgalen

Abstract

This study investigates the efficacy of machine learning algorithms in sentiment classification within the context of Culture and Heritage Tourism content analysis. This study adopts the CRISP-DM method, a comprehensive methodology encompassing distinct stages, including business understanding, data understanding, modeling, evaluation, and deployment. The k-nearest Neighbors, Decision Tree, Naive Bayes Classifier, and Support Vector Machine models are used. The performance of each model is scrutinized through confusion matrix analysis, encompassing metrics such as accuracy, precision, recall, and F-measure. Additionally, the impact of the Synthetic Minority Over-sampling Technique (SMOTE) implementation on addressing data imbalance is assessed. Leveraging data from the national geographic channel's YouTube platform, with a focus on ma'nene content, results reveal SVM's consistent superiority, particularly with SMOTE integration, showcasing elevated accuracy (77.89%), precision (72.60%), recall (89.62%), and F-measure (80.21%) values. These findings underscore the importance of algorithm selection and data preprocessing methods in enhancing sentiment classification accuracy for culture and heritage tourism content, thus contributing quantifiable insights to the tourism research domain.

##plugins.themes.bootstrap3.article.details##

How to Cite
Singgalen, Y. A. (2023). Culture and heritage tourism sentiment classification through cross-industry standard process for data mining. International Journal of Basic and Applied Science, 12(3), 110–120. https://doi.org/10.35335/ijobas.v12i3.299
References
Y. Zhao and E. Agyeiwaah, “Exploring value-based motivations for culture and heritage tourism using the means-end chain and laddering approach,” J. Herit. Tour., vol. 18, no. 5, pp. 594–616, 2023, doi: 10.1080/1743873X.2023.2215933.
T. D. Quang, W. B. Noseworthy, and D. Paulson, “Rising tensions: heritage-tourism development and the commodification of ‘Authentic’ culture among the Cham community of Vietnam,” Cogent Soc. Sci., vol. 8, no. 1, pp. 1–23, 2022, doi: 10.1080/23311886.2022.2116161.
R. Luekveerawattana, “Enhancing innovation in cultural heritage tourism: navigating external factors,” Cogent Soc. Sci., vol. 10, no. 1, pp. 1–15, 2024, doi: 10.1080/23311886.2024.2301813.
S. Jiang, B. Moyle, R. Yung, L. Tao, and N. Scott, “Augmented reality and the enhancement of memorable tourism experiences at heritage sites,” Curr. Issues Tour., vol. 26, no. 2, pp. 242–257, 2023, doi: 10.1080/13683500.2022.2026303.
W. Luo, Y. Lu, D. J. Timothy, and X. Zang, “Tourism and conserving intangible cultural heritage: Residents’ perspectives on protecting the nüshu female script,” J. China Tour. Res., vol. 18, no. 6, pp. 1305–1329, 2022, doi: 10.1080/19388160.2022.2036663.
E. Rindrasih and P. Witte, “Reinventing the post-disaster cultural landscape of heritage tourism in Kotagede, Yogyakarta, Indonesia,” J. Herit. Tour., vol. 16, no. 2, pp. 136–150, 2021, doi: 10.1080/1743873X.2020.1781870.
C. Dolezal and M. Novelli, “Power in community-based tourism: empowerment and partnership in Bali,” J. Sustain. Tour., vol. 30, no. 10, pp. 2352–2370, 2022, doi: 10.1080/09669582.2020.1838527.
D. Zheng, C. Huang, and B. Oraltay, “Digital cultural tourism: progress and a proposed framework for future research,” Asia Pacific J. Tour. Res., vol. 28, no. 3, pp. 234–253, 2023, doi: 10.1080/10941665.2023.2217958.
M. H. Sumiaty, C. E. Randalele, R. Iye, and F. I. Nur Abida, “The value of Tallu Lolona and its influence to the life of Toraja people,” Cogent Soc. Sci., vol. 9, no. 2, pp. 1–18, 2023, doi: 10.1080/23311886.2023.2262775.
R. A. Kinseng, A. Kartikasari, N. Aini, R. Gandi, and D. Dean, “COVID-19 and the emergence of virtual tourism in Indonesia: A sociological perspective,” Cogent Soc. Sci., vol. 8, no. 1, pp. 1–15, 2022, doi: 10.1080/23311886.2022.2026557.
F. Mehraliyev, I. C. C. Chan, and A. P. Kirilenko, “Sentiment analysis in hospitality and tourism: a thematic and methodological review,” Int. J. Contemp. Hosp. Manag., vol. 34, no. 1, pp. 46–77, 2022, doi: 10.1108/IJCHM-02-2021-0132.
A. Galiano-Coronil, S. Blanco-Moreno, L. B. Tobar-Pesantez, and G. A. Gutiérrez-Montoya, “Social media impact of tourism managers: a decision tree approach in happiness, social marketing and sustainability,” J. Manag. Dev., vol. 42, no. 6, pp. 436–457, 2023, doi: 10.1108/JMD-04-2023-0131.
F. Mirzaalian and E. Halpenny, “Social media analytics in hospitality and tourism: A systematic literature review and future trends,” J. Hosp. Tour. Technol., vol. 10, no. 4, pp. 764–790, 2019, doi: 10.1108/JHTT-08-2018-0078.
C. Zhu, M. U. Io, H. F. B. Ngan, and R. L. Peralta, “Interpreting the impact of augmented reality on heritage tourism: two empirical studies from World Heritage sites,” Curr. Issues Tour., pp. 1–15, 2024, doi: 10.1080/13683500.2023.2298349.
E. Mele and L. Egberts, “Exploring travel blogs on tourism and landscape heritage: representations of the Swiss Alps,” J. Herit. Tour., vol. 18, no. 6, pp. 785–806, 2023, doi: 10.1080/1743873X.2023.2237617.
A. Hausmann and S. Schuhbauer, “The role of information and communication technologies in cultural tourists’ journeys: the case of a World Heritage Site,” J. Herit. Tour., vol. 16, no. 6, pp. 669–683, 2021, doi: 10.1080/1743873X.2020.1819300.
C. E. Yu and X. Zhang, “The embedded feelings in local gastronomy: a sentiment analysis of online reviews,” J. Hosp. Tour. Technol., vol. 11, no. 3, pp. 461–478, 2020, doi: 10.1108/JHTT-02-2019-0028.
A. Tuomi, E. Moreira Kares, and H. Zainal Abidin, “Digital cultural tourism: older adults’ acceptance and use of digital cultural tourism services,” Scand. J. Hosp. Tour., vol. 23, no. 2–3, pp. 226–247, 2023, doi: 10.1080/15022250.2023.2256698.
E. Gatelier, D. Ross, L. Phillips, and J. B. Suquet, “A business model innovation methodology for implementing digital interpretation experiences in European cultural heritage attractions,” J. Herit. Tour., vol. 17, no. 4, pp. 391–408, 2022, doi: 10.1080/1743873X.2022.2065920.
Y. A. Singgalen, “Penerapan Metode CRISP-DM untuk Optimalisasi Strategi Pemasaran STP (Segmenting , Targeting , Positioning) Layanan Akomodasi Hotel , Homestay , dan Resort,” J. Media Inform. Budidarma, vol. 7, no. 4, pp. 1980–1993, 2023, doi: 10.30865/mib.v7i4.6896.
Y. A. Singgalen, “Penerapan Metode CRISP-DM dalam Klasifikasi Data Ulasan Pengunjung Destinasi Danau Toba Menggunakan Algoritma Naïve Bayes Classifier ( NBC ) dan Decision Tree ( DT ),” J. Media Inform. Budidarma, vol. 7, no. 3, pp. 1551–1562, 2023, doi: 10.30865/mib.v7i3.6461.
Y. A. Singgalen, “Analisis Sentimen Pengunjung Pulau Komodo dan Pulau Rinca di Website Tripadvisor Berbasis CRISP-DM,” J. Inf. Syst. Res., vol. 4, no. 2, pp. 614–625, 2023, doi: 10.47065/josh.v4i2.2999.
Y. A. Singgalen, “Penerapan CRISP-DM dalam Klasifikasi Sentimen dan Analisis Perilaku Pembelian Layanan Akomodasi Hotel Berbasis Algoritma Decision Tree ( DT ),” J. Sist. Komput. dan Inform., vol. 5, no. 2, pp. 237–248, 2023, doi: 10.30865/json.v5i2.7081.
Y. A. Singgalen, “Analisis Perilaku Wisatawan Berdasarkan Data Ulasan di Website Tripadvisor Menggunakan CRISP-DM : Wisata Minat Khusus Pendakian Gunung Rinjani dan Gunung Bromo,” J. Comput. Syst. Informatics, vol. 4, no. 2, pp. 326–338, 2023, doi: 10.47065/josyc.v4i2.3042.
Y. A. Singgalen, “Analisis Sentimen Wisatawan terhadap Kualitas Layanan Hotel dan Resort di Lombok Menggunakan SERVQUAL dan CRISP-DM,” Build. Informatics, Technol. Sci., vol. 4, no. 4, pp. 1870–1882, 2023, doi: 10.47065/bits.v4i4.3199.
Y. A. Singgalen, “Analisis Sentimen Konsumen terhadap Food , Services , and Value di Restoran dan Rumah Makan Populer Kota Makassar Berdasarkan Rekomendasi Tripadvisor Menggunakan Metode CRISP-DM dan,” Build. Informatics, Technol. Sci., vol. 4, no. 4, pp. 1899–1914, 2023, doi: 10.47065/bits.v4i4.3231.
Y. A. Singgalen, “Analisis Sentimen Wisatawan terhadap Taman Nasional Bunaken dan Top 10 Hotel Rekomendasi Tripadvisor Menggunakan Algoritma SVM dan DT berbasis CRISP-DM,” J. Comput. Syst. Informatics, vol. 4, no. 2, pp. 367–379, 2023, doi: 10.47065/josyc.v4i2.3092.
Y. A. Singgalen, “Analisis Performa Algoritma NBC , DT , SVM dalam Klasifikasi Data Ulasan Pengunjung Candi Borobudur Berbasis CRISP-DM,” Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1634–1646, 2022, doi: 10.47065/bits.v4i3.2766.
R. Obiedat et al., “Sentiment Analysis of Customers’ Reviews Using a Hybrid Evolutionary SVM-Based Approach in an Imbalanced Data Distribution,” IEEE Access, vol. 10, pp. 22260–22273, 2022, doi: 10.1109/ACCESS.2022.3149482.
A. Andreyestha and Q. N. Azizah, “Analisa Sentimen Kicauan Twitter Tokopedia Dengan Optimalisasi Data Tidak Seimbang Menggunakan Algoritma SMOTE,” Infotek J. Inform. dan Teknol., vol. 5, no. 1, pp. 108–116, 2022, doi: 10.29408/jit.v5i1.4581.
M. I. Putri and I. Kharisudin, “Penerapan Synthetic Minority Oversampling Technique (SMOTE) Terhadap Analisis Sentimen Data Review Pengguna Aplikasi Marketplace Tokopedia,” in PRISMA, Prosiding Seminar Nasional Matematika, 2022, vol. 5, pp. 759–766. [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/
N. Ginantra, C. P. Yanti, and ..., “Analisis Sentimen Ulasan Villa di Ubud Menggunakan Metode Naive Bayes, Decision Tree, dan K-NN,” J. Nas. …, 2022, [Online]. Available: https://ejournal.undiksha.ac.id/index.php/janapati/article/view/49450
H. J. Christanto and Y. A. Singgalen, “Sentiment Analysis on Customer Perception towards Products and Services of Restaurant in Labuan Bajo,” J. Inf. Syst. Informatics, vol. 4, no. 3, pp. 511–523, 2022, doi: 10.51519/journalisi.v4i3.276.
Rousyati, W. Gata, D. Pratmanto, and N. K. Warchani, “Analisis Sentimen Financial Technology Peer to Peer Lending Pada Aplikasi Koinworks,” J. Teknol. Infor, vol. 9, no. 6, pp. 1167–1176, 2022, doi: 10.25126/jtiik.202294409.
B. Noori, “Classification of Customer Reviews Using Machine Learning Algorithms,” Appl. Artif. Intell., vol. 35, no. 8, pp. 567–588, 2021, doi: 10.1080/08839514.2021.1922843.
G. Cahyani, W. Widayani, S. D. Anggita, and ..., “Klasifikasi Data Review IMDb Berdasarkan Analisis Sentimen Menggunakan Algoritma Support Vector Machine,” J. MEDIA …, 2022, [Online]. Available: http://stmik-budidarma.ac.id/ejurnal/index.php/mib/article/view/4023
Q. A’yuniyah et al., “Implementasi Algoritma Naïve Bayes Classifier (NBC) untuk Klasifikasi Penyakit Ginjal Kronik,” J. Sist. Komput. dan Inform., vol. 4, no. 1, pp. 72–76, 2022, doi: 10.30865/json.v4i1.4781.
K. Puh and M. Bagić Babac, “Predicting sentiment and rating of tourist reviews using machine learning,” J. Hosp. Tour. Insights, vol. 6, no. 3, pp. 1188–1204, 2023, doi: 10.1108/JHTI-02-2022-0078.
H. Syah and A. Witanti, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (Svm),” J. Sist. Inf. Dan …, 2022, [Online]. Available: http://ejournal.lppm-unbaja.ac.id/index.php/jsii/article/view/1411
F. Z. Ruskanda, M. R. Abiwardani, R. Mulyawan, I. Syafalni, and H. T. Larasati, “Quantum-Enhanced Support Vector Machine for Sentiment Classification,” IEEE Access, vol. 11, no. July, pp. 87520–87532, 2023, doi: 10.1109/ACCESS.2023.3304990.